ГОСТ Р 50254-92

Группа Е06*

* В указателе "Государственные стандарты" 2001 год (том 4) для ГОСТ 50254-92 указана группа Е09. Примечание "КОДЕКС"

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОРОТКИЕ ЗАМЫКАНИЯ В ЭЛЕКТРОУСТАНОВКАХ

Методы расчета электродинамического и термического действия тока короткого замыкания

Short circuit in electrical installations. Calculation methods of thermal and electrodynamic effects of short circuit currents

ОКП 340900

Дата введения 1994-01-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН подкомитетом ПК-2 технического комитета ТК 117

РАЗРАБОТЧИКИ

Л.Г. Мамиконянц, д-р техн. наук; Б.Н. Неклепаев, д-р техн. наук (руководители темы); А.В. Клименко, д-р техн. наук; И.П. Крючков, канд. техн. наук; Ю.Н. Львов, канд. техн. наук; В.В. Жуков, канд. техн. наук; Е.П. Кудрявцев, д-р техн. наук, А.П. Долин, канд. техн. наук

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 08.09.92 N 1141

3. ВВЕДЕН ВПЕРВЫЕ

Настоящий стандарт распространяется на трехфазные электроустановки промышленной частоты и определяет общую методику расчета и проверки проводников и электрических аппаратов на электродинамическую и термическую стойкость при коротких замыканиях. Все пункты основного текста стандарта являются обязательными, а приложения - рекомендуемыми.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Выбор расчетных условий КЗ

1.1.1. При проверке проводников и электрических аппаратов электроустановок на электродинамическую и термическую стойкость при КЗ предварительно должны быть выбраны расчетные условия КЗ, т.е. расчетная схема электроустановки, расчетный вид КЗ в электроустановке, расчетная точка КЗ, а также расчетная продолжительность КЗ в электроустановке (последнюю используют при проверке на термическую стойкость проводников и на невозгораемость кабелей).

1.1.2. Расчетная схема электроустановки должна быть выбрана на основе анализа возможных электрических схем этой электроустановки при продолжительных режимах ее работы. К последним следует относить также ремонтные и послеаварийные режимы работы.

1.1.3. Расчетным видом КЗ следует принимать:

 при проверке электрических аппаратов и жестких проводников на электродинамическую стойкость трехфазное КЗ;

- при проверке электрических аппаратов и проводников на термическую стойкость - трех- или однофазное КЗ, а на генераторном напряжении электростанций - трех- или двухфазное КЗ, в зависимости от того, какое из них приводит к большему термическому воздействию;

- при проверке гибких проводников по условию их допустимого сближения во время КЗ - трех- или двухфазное КЗ, в зависимости от того, какое из них приводит к большему сближению проводников.

1.1.4. В качестве расчетной точки КЗ следует принимать такую точку на расчетной схеме, при КЗ в которой проводник или электрический аппарат подвергается наибольшему электродинамическому или термическому воздействию.

Примечание. Исключения из этого требования допустимы лишь при учете вероятностных характеристик КЗ и должны быть обоснованы соответствующими ведомственными нормативно-техническими документами (НТД).

1.1.5. Расчетную продолжительность КЗ при проверке проводников и электрических аппаратов на термическую стойкость следует определять путем сложения времени действия основной релейной защиты, в зону которой входят проверяемые проводники и электрические аппараты, и полного времени отключения соответствующего выключателя, а при проверке кабелей на невозгораемость - путем сложения времени действия резервной релейной защиты и полного времени отключения ближайшего к месту КЗ выключателя.

При наличии устройств автоматического повторного включения (АПВ) цепи следует учитывать суммарное термическое действие тока КЗ.

1.1.6. При расчетной продолжительности КЗ до 1 с допустимо процесс нагрева проводников под действием тока КЗ считать адиабатическим, а при расчетной продолжительности КЗ более 1 с и при небыстродействующих АПВ следует учитывать теплоотдачу в окружающую среду.

2. ЭЛЕКТРОДИНАМИЧЕСКОЕ ДЕЙСТВИЕ ТОКА КЗ

2.1. Расчет электродинамических сил взаимодействия проводников

2.1.1. Электродинамические силы взаимодействия двух параллельных проводников конечного сечения (*F*) в ньютонах следует определять по формуле

$$F = 2 \cdot 10^{-7} i_1 i_2 \frac{l}{a} K_{\Phi} \,, \tag{1}$$

где $2 \cdot 10^{-7}$ - постоянный параметр, Н/А 2 ;

а - расстояние между осями проводников, м;

*i*₁,*i*₂ - мгновенные значения тока проводников, А;

l - длина проводников, м;

К_ф - коэффициент формы.

Для проводников прямоугольного сечения коэффициент формы следует определять по кривым, приведенным

Диаграмма для определения коэффициентов формы шин прямоугольного сечения

Для круглых проводников сплошного сечения, проводников кольцевого сечения, а также проводников (шин) корытного сечения с высотой сечения 0,1 м и более следует принять K_{Φ} = 1,0.

2.1.2. Наибольшее значение электродинамической силы имеет место при ударном токе КЗ.

2.1.3. Максимальную силу ($F_{max}^{(3)}$) в ньютонах (эквивалентную равномерно распределенной по длине пролета нагрузки), действующую в трехфазной системе проводников на расчетную фазу при трехфазном КЗ, следует определять по формуле

$$F_{\text{max}}^{(3)} = \frac{\sqrt{3} \cdot 10^{-7}}{a} l \left(i_{\text{yrr}}^{(3)} \right)^2 K_{\Phi} K_{\text{pactr}},$$
(2)

где $i_{\rm yg}^{(3)}$ - ударный ток трехфазного КЗ, А;

Краст - коэффициент, зависящий от взаимного расположения проводников;

- а расстояние между осями проводников, м;
- *l* длина пролета, м.

Значения коэффициента $K_{
m pact}$ для некоторых типов шинных конструкций (черт. 2) указаны в табл. 1.

Схемы взаимного расположения шин

Черт. 2

Расположение шин	Расчетная	Значения	Значения коэффициента $K_{\mathbf{p}_{\mathbf{A}\mathbf{C}\mathbf{T}}}$ для нагрузок		
	фаза	резуль- тирующе й	изги- бающей	растяги- вающей	сжима- ющей
1. В одной плоскости (черт. 2а)	В	1,00	1,00	0	0
2. По вершинам равностороннего треугольника (черт. 2б)	A B	1,00 1,00	0,94 0,50	0,25 1,00	0,75 0
	С	1,00	0,94	0,25	0,75
3. По вершинам прямоугольного равнобедренного треугольника (черт 2в)	А	0,87	0,87	0,29	0,87
(.0p.:0)	В	0,95	0,43	0,83	0,07
	С	0,95	0,93	0,14	0,43
4. По вершинам равностороннего треугольника (черт. 2г)	A, B, C	1,00	0,50	1,00	0

Значения коэффициента K_{part}

При двухфазном КЗ

$$F_{\rm max}^{(2)} = \frac{2 \cdot 10^{-7}}{a} l \left(i_{\rm yx}^{(2)} \right)^2 K_{\Phi} K_{\rm pacm}, \tag{3}$$

где $i_{yq}^{(2)}$ - ударный ток двухфазного КЗ, А.

2.2. Выбор расчетной механической схемы шинных конструкций и гибких токопроводов

2.2.1. Методику расчета электродинамической стойкости шинных конструкций и гибких токопроводов следует выбирать на основе расчетной механической схемы, учитывающей их особенности.

2.2.2. Следует различать:

- статические системы, обладающие высокой жесткостью, у которых шины и изоляторы при КЗ остаются неподвижными;

- динамические системы с жесткими опорами, у которых изоляторы при КЗ могут считаться неподвижными, а шины колеблются;

- динамические системы с упруго податливыми опорами, в которых при КЗ колеблются шины и опоры;

- динамические системы с гибкими проводами.

2.2.3. Расчетные механические схемы шинных конструкций различных типов, обладающих высокой жесткостью, представлены в табл. 2.

Номер схемы	Расчетная схема	Тип балки и опоры	K	оэффициент	Ы
			х	β	r_1
1	A A A B	Однопролетная А и В - изоляторы-опоры	8	1	3,14
2	<u>}</u> ♦A ♦B	Однопролет ная А -защемление шины; В - изолятор-опора	8	1,25	3,93
3	A AB	А и В - защемление шины на жестких опорах	12	1	4,73
4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Балка с двумя пролетами	8	1,25	3,93
5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Балка с тремя и более пролетами	10* 12**	1,13 1	4,73
* Для крайних пролетов, ** Для средних пролетов.					

Расчетная схема шинных конструкций

Расчетные схемы имеют вид равнопролетной балки, лежащей или закрепленной на жестких опорах и подвергающейся воздействию равномерно распределенной нагрузки.

Различают следующие типы шинных конструкций и соответствующих расчетных механических схем:

- шинные конструкции с разрезными шинами, длина которых равна длине одного пролета; расчетной схемой для них является балка с шарнирным опиранием на обеих опорах пролета (табл. 2, схема 1);

- шинные конструкции с разрезными шинами, длина которых равна длине двух пролетов, с жестким креплением на средней опоре; расчетной схемой для них является балка с жестким опиранием (защемлением) на одной и шарнирным на другой опоре пролета (табл. 2, схема 2);

- многопролетная шинная конструкция с неразрезными шинами; расчетной схемой для средних пролетов является балка с жестким опиранием (защемлением) на обеих опорах пролета (табл. 2, схема 3);

- шинные конструкции с разрезными шинами, длина которых равна двум, трем и более пролетам, без жесткого

крепления на промежуточных опорах; расчетной схемой для них являются соответственно схемы 4 и 5 (табл. 2).

2.2.4. Расчетной схемой шинной конструкции с упруго податливыми опорами следует считать схему, в которой масса шины распределена по длине пролета, а опоры представлены телами с эквивалентной массой M и пружинами с жесткостью C_{orr} .

2.2.5. Для гибких токопроводов в качестве расчетной схемы применяют схему с жестким стержнем, ось которого очерчена по цепной линии. Гирлянды изоляторов вводят в механическую схему в виде жестких стержней, шарнирно соединенных с проводами и опорами. Размеры стержней расчетной схемы определяют из статического расчета на действие сил тяжести.

2.3. Допустимые механические напряжения в материале проводников и механические нагрузки на опоры при КЗ

2.3.1. Допустимое напряжение в материале жестких шин ($\sigma_{\rm дот}$) в паскалях следует принимать равным 70% от временного сопротивления разрыву материала шин $\sigma_{\rm p}$

$$\sigma_{\text{gorr}} = 0.7 \sigma_{\text{p}} \,. \tag{4}$$

Допустимые напряжения в материале шин следует принимать ниже пределов текучести этого материала.

Временные сопротивления разрыву и допускаемые напряжения в материалах шин приведены в табл. 3.

В случае сварных шин их временное сопротивление разрыву снижается. Значения временных сопротивлений разрыву в области сварных соединений определяют экспериментально; при отсутствии экспериментальных данных эти значения и значения допустимых напряжений следует принимать, используя данные табл. 3.

Таблица 3

Основные характеристики материалов шин

Материал шины	Марка	Временное сопротивление разрыву, МПа		Допустимое напряжение, МПа		Модуль упругости, 10 ¹⁰ Па
		материала	в области сварного соединения	материала	в области сварного соединения	
1.Алюминий	А0, А АД0	118 59-69	118 59-69	82 41-48	82 41-48	7 7
2. Алюми- ниевый	АД31Т	127	120	89	84	7
сплав	АД31Т1	196	120	137	84	7
	ABT1	304	152	213	106	7
	1915T	353	318	247	223	7
3. Медь	МГМ	245-255	-	171,5-178	-	10
	МГТ	245-294	-	171,5-206	-	10

2.3.2. Допустимую нагрузку на изолятор (изоляционную опору) ($F_{\rm non}$) следует принимать равной 60% от

минимальной разрушающей нагрузки F_{parp} , приложенной к вершине изолятора (опоры) при изгибе или разрыве

$$F_{\rm gorr} = 0.6 F_{\rm parp}.$$
 (5)

2.3.3. В зависимости от взаимного расположения шин и изоляторов последние подвергаются воздействию электродинамических сил, работая на изгиб или растяжение (сжатие) или одновременно на изгиб и растяжение (сжатие). Допустимые нагрузки на изоляторы при изгибе ($F_{\rm доптист}$) и растяжении ($F_{\rm доптр}$) в ньютонах в этих случаях следует принимать соответственно равными:

$$F_{\text{gorner}} = 0.6F_{\text{parp Her}};$$

$$F_{\text{gornp}} = 0.6F_{\text{parp p}}$$

$$(6)$$

где $F_{\text{разризг}}$ и $F_{\text{разризг}}$ - задаваемые заводом-изготовителем минимальные разрушающие нагрузки соответственно при изгибе и растяжении (сжатии) изолятора, Н.

2.3.4. Допустимую нагрузку на спаренные изоляторы (опоры) следует принимать равной 50% от суммарного разрушающего усилия изоляторов (опор)

$$F_{\text{gon}} = 0.5F_{\text{papp}}, \qquad (7)$$

где $F_{\text{разр}\Sigma}$ - суммарное разрушающее усилие спаренных изоляторов (опор), Н.

2.3.5. Допустимую нагрузку при изгибе опорного изолятора ($F_{\rm доп}$) в ньютонах следует определять в соответствии с формулой

$$F_{\text{gorr}} = NF_{\text{parp}} \frac{h}{H}, \tag{8}$$

где N - коэффициент допустимой нагрузки, равный 0,6 или 0,5 (см. пп. 2.3.2. - 2.3.4);

h и *H* - расстояния от опасного сечения изолятора соответственно до его вершины и центра тяжести поперечного сечения шины (см. черт. 3), м.

К определению допустимых нагрузок на изоляторы и шинные опоры

Опасное сечение опорно-стержневых изоляторов с внутренним креплением арматуры (черт. 3а) следует принимать у опорного фланца, опорно-стержневых изоляторов с внешним креплением арматуры (черт. 3б, в) - у кромки нижнего фланца, а опорно-штыревых изоляторов (черт. 3г) - на границе контакта штыря с фарфоровым телом изолятора.

Допустимую изгибающую нагрузку многоярусных изоляционных опор (черт. 3в, г) следует принимать равной допустимой нагрузке наименее прочного яруса, определенной по формуле (8).

2.3.6. При расположении фаз по вершинам треугольника (черт. 2б, в, г) изоляторы одновременно испытывают как растягивающие (сжимающие), так и изгибающие усилия. Допустимую изгибающую нагрузку ($F_{\rm доптист}$) в ньютонах следует определять по формуле (8), принимая $F_{\rm parp}$ равной разрушающей нагрузке при изгибе изолятора; допустимую растягивающую нагрузку ($F_{\rm доптр}$) следует определять по формуле (5), принимая $F_{\rm parp}$ равной разрушающей нагрузке при изгибе изолятора; допустимую растягивающую нагрузку ($F_{\rm доптр}$) следует определять по формуле (5), принимая $F_{\rm parp}$

$$\sigma_{\text{gon}} = N \sigma_{\text{rp}}$$
,

где $\sigma_{
m rp}$ - предел прочности при растяжении, H;

N - коэффициент допустимой нагрузки, равный 35-50% от предела прочности.

2.3.8. Допустимую нагрузку на подвесные изоляторы следует принимать равной 30% от разрушающей нагрузки, т. е.

$$F_{\text{gon}} = 0.3F_{\text{page}}.$$
(9)

2.3.9. Расстояния между проводниками фаз ($A_{\frac{1}{4}-\frac{1}{4}}$), а также между проводниками и заземленными частями ($A_{\frac{1}{4}-\frac{3}{2}}$) шинных конструкций напряжением 35 кВ и выше и проводов ошиновки распределительных устройств, воздушных линий и токопроводов к моменту отключения КЗ должны оставаться больше допустимых изоляционных расстояний, определяемых при рабочих напряжениях

$$\begin{array}{c}
A_{\Psi \cdot \Phi} \geq A_{\Psi \cdot \Phi, \text{zorr}}; \\
A_{\Psi \cdot a} \geq A_{\Psi \cdot a, \text{zorr}}
\end{array},$$
(10)

где $A_{\Phi-\Phi, \pi o \pi}$ и $A_{\Phi-3, \pi o \pi}$ - минимально допустимые расстояния по условиям пробоя соответственно между проводниками фаз и проводниками и заземленными частями при рабочем напряжении.

2.4. Определение механических напряжений в материале проводников и нагрузок на их опоры при КЗ

2.4.1. Расчет шинных конструкций, обладающих высокой жесткостью

2.4.1.1. При расчете шинной конструкции, обладающей высокой жесткостью, шину в любом пролете между изоляторами, кроме крайних, следует рассматривать как стержень (балку с шарнирно опертыми концами, табл. 2). Наличие ответвлений допускается не учитывать.

2.4.1.2. Максимальное напряжение в материале шины (σ_{max}) в паскалях и нагрузку на изолятор шинной конструкции высокой жесткости при трехфазном КЗ ($F_{max}^{(3)}$) в ньютонах следует определять по формулам:

$$\sigma_{\max} = \frac{M_{\max}}{W} = \frac{F_{\max}^{(3)}l}{\lambda W}$$
(11)

И

$$F_{_{\rm HS}}^{(3)} = \beta F_{_{\rm IIIAN}}^{(3)}, \qquad (12)$$

где $F_{\max}^{(3)}$ - максимальная сила, возникающая в многопролетной балке при

трехфазном КЗ, Н, и определяемая по формуле (2);

l - длина пролета шин, м;

W - момент сопротивления поперечного сечения шины, м³;

формулы для его расчета приведены в табл. 4;

λ и β - коэффициенты, зависящие от условия опирания (закрепления) шин, а также числа пролетов конструкции с неразрезными шинами (табл. 2).

При двухфазном КЗ

$$\sigma_{\max} = \frac{F_{\max}^{(2)}l}{\lambda W}$$
(13)

и

$$F_{\rm HS}^{(2)} = \beta F_{\rm max}^{(2)} \,, \tag{14}$$

где $F_{\text{max}}^{(2)}$ - максимальная сила, возникающая в многопролетной балке при двухфазном КЗ, Н, и определяемая по формуле (3).

При расчете напряжений в области сварных соединений, находящихся на расстоянии *z* от опорного сечения, в формулы (11) и (13) следует поставлять значения $1/\lambda$ (*z*), вычисленные в соответствии с табл. 10.

2.4.1.3. Электродинамические нагрузки на отдельные проводники составных шин (черт. 4) обусловлены взаимодействием проводников других фаз и отдельных элементов проводника одной фазы. Максимальное напряжение в материале составных шин при КЗ допускается определять по формуле

$$\sigma_{\max} = \sigma_{\oplus max} + \sigma_{\pi mmax}, \tag{15}$$

где σ_{tmax} - максимальное напряжение в материале шины, обусловленное

взаимодействием проводников других фаз, Па, которое следует определять в зависимости от вида КЗ по формуле (11) или (13);

*а*_{этте с} - максимальное напряжение в материале шины, обусловленное

взаимодействием отдельных элементов проводника одной фазы, Па, которое следует определять по формуле

$$\sigma_{3\pi\text{wax}} = \frac{2 \cdot 10^{-7} l_{3\pi}^2 K_{\Phi}}{12 a_{3\pi} W_{3\pi}} \left(\frac{i_{y\pi}}{n} \right)^2, \tag{16}$$

где $l_{3\pi}$ - длина пролета элемента шины между прокладками, м;

 α_{эπ} - расстояние между осями поперечных сечений элементов составных шин (черт. 4), м;

 $W_{3\pi}$ - момент сопротивления поперечного сечения элемента шины, м³;

- i_{ул} ударный ток трехфазного или двухфазного КЗ, А;
- и число составных проводников фазы.

Двухполосная шина

Черт. 4

Таблица 4

Формулы для определения момента инерции J и момента сопротивления W поперечных сечений шин

2.4.2. Расчет шинных конструкций с жесткими опорами

2.4.2 1. Шинную конструкцию, изоляторы которой обладают высокой жесткостью, в расчетах на динамическую стойкость при КЗ следует представлять как стержень с защемленными концами, имеющий лишь основную частоту собственных колебаний.

2.4.2.2. Максимальное напряжение в материале шин (σ_{max}) в паскалях и нагрузку на изоляторы (F_{rg}) в ньютонах при расположении шин в одной плоскости и высокой жесткости изоляторов шинной конструкции следует определять по формулам:

при трехфазном КЗ

$$\sigma_{\max} = \frac{F_{\max}^{(3)}l}{\lambda W} \eta \tag{17}$$

и

$$F_{\rm HS}^{(3)} = \beta F_{\rm max}^{(3)} \eta, \tag{18}$$

при двухфазном КЗ

$$\sigma_{\max} = \frac{F_{\max}^{(2)}l}{\lambda W} \eta \tag{19}$$

И

$$F_{\rm H2}^{(2)} = \beta F_{\rm max}^{(2)} \eta, \tag{20}$$

где 77 - коэффициент динамической нагрузки, зависящий от расчетной основной частоты собственных колебаний шины f_1 . Значения коэффициента в зависимости от отклонения f_1 / f_c (f_c = 50 Гц) следует определять по графикам, приведенным на черт. 5.

Зависимость динамического коэффициента для изоляторов и шин от частоты собственных колебаний шины

Черт. 5

Значения расчетной частоты собственных колебаний (f_1) в герцах следует определять в соответствии с 2.4.2.4.

2.4.2.3. Максимальную нагрузку на проходные изоляторы ($F_{_{
m HS}}$) в ньютонах следует определять по формуле

$$F_{\rm PE} = \beta \frac{\sqrt{3} \cdot 10^{-7}}{\alpha} l_{\rm PD} (i_{\rm YD}^{(3)})^2 K_{\rm \phi} K_{\rm pace} \eta, \qquad (21)$$

где $l_{\mathbf{rp}}$ - расстояние от торца проходного изолятора до ближайшего опорного изолятора фазы, м.

2.4.2.4. Расчетную частоту собственных колебаний шины (f_1) в герцах следует определять по формуле

$$f_1 = \frac{r_1^2}{2\pi l^2} \sqrt{\frac{EJ}{m}},$$
 (22)

где Е - модуль упругости материала шины, Па;

- J момент инерции поперечного сечения шины, м ⁴ ;
- масса шины на единицу длины, кг/м;
- r₁ параметр основной частоты собственных колебаний шины.

Значения этого параметра зависят от типа шинной конструкции и представлены в табл. 2.

2.4.2.5. Максимальное напряжение в материале составных шин (σ_{max}) в паскалях шинной конструкции с жесткими опорами допустимо определять по формуле (15). При этом максимальное напряжение в материале шин, обусловленное взаимодействием проводников других фаз ($\sigma_{\phi max}$) в паскалях, следует определять в зависимости от вида КЗ по формуле (17) или (19), а максимальное напряжение в материале шины, обусловленное взаимодействием отдельных элементов проводника одной фазы ($\sigma_{3\pimax}$) в паскалях, - по формуле

$$\sigma_{3\pi max} = \frac{2 \cdot 10^{-7} l_{3\pi}^2 K_{\Phi}}{\lambda a_{3\pi} W_{3\pi}} \left(\frac{i_{3\pi}}{n}\right)^2 \eta_{3\pi}, \qquad (23)$$

где $\eta_{\mathfrak{s}\mathfrak{n}}$ - коэффициент динамической нагрузки, зависящий от расчетной основной

частоты собственных колебаний элементов составной шины ($f_{13\pi}$), который следует определять по расчетным графикам, приведенным на черт 5.

Расчетную основную частоту собственных колебаний элементов составной шины ($f_{13\pi}$) в герцах следует определять по формуле

$$f_{13\pi} = \frac{4,73^2}{2\pi l_{3\pi}^2} \sqrt{\frac{EJ}{m_{3\pi}}},$$
(24)

где $l_{\mathfrak{I}\mathfrak{I}\mathfrak{I}}$ - длина пролета элемента шины между прокладками, м;

- J момент инерции поперечного сечения элемента шин, м ⁴ ;
- *т*_{эл} масса элемента на единицу длины, кг/м;
- *α*_{יэπ} расстояние между осями поперечных сечений элементов составных шин (черт 4), м.

2.4.2.6. Максимальное напряжение в материале шин (σ_{max}) в паскалях и максимальную нагрузку на опорные и проходные изоляторы (F_{HI}) в ньютонах, при расположении шин по вершинам треугольника (черт 2б, в, г), следует определять с учетом их пространственных колебаний, используя формулы:

$$\sigma_{\max} = \frac{F_{\max}l}{\lambda W} \eta \zeta \sigma; \tag{25}$$

$$F_{\rm HS}^{(3)} = F_{\rm max}^{(3)} \eta \xi_F; \tag{26}$$

$$F_{\rm HS}^{(2)} = F_{\rm max}^{(2)} \eta \xi_F, \qquad (27)$$

где *W* - меньший из двух моментов сопротивления поперечного сечения шины (момента сопротивления *W*_u при изгибе в плоскости *U* и момента сопротивления *W*_e при изгибе шины в плоскости *т* (черт. 2), м³;

- F⁽³⁾_{max}, F⁽²⁾_{max} электродинамические силы, определяемые соответственно
 по формулам (2) и (3);

Таблица 5

	Эскиз конструкции	Значение коэффициента	Значение коэф	официента ξ_{σ}
Расположение шин	на черт. 2	ξŗ	для шин круглого и кольцевого сечений	для шин квадратного сечения
 По вершинам прямоугольного равнобедренного треугольника 	В	0,95	0,95	1,16
2. По вершинам равностороннего треугольника	б г	1,0 1,0	1,0 1,0	1,39 1,21

Значения коэффициентов ξ_{σ} и ξ_{F} шинных конструкций

2.4.3. Расчет подвесного самонесущего токопровода

2.4.3.1. Расчетное максимальное напряжение в материале шин подвесного самонесущего токопровода ($\sigma_{\text{расчилах}}$) в паскалях следует определять с учетом собственного веса, веса изоляционных распорок и льда, а также действия напора ветра, т. е.

$$\sigma_{\text{paramax}} = \sigma_{\text{max}} + \sigma_{\text{p}}$$
 ,

где σ_{max} - максимальное напряжение в материале шин вследствие электродинамического действия тока КЗ;

Нагрузку на изолятор подвесного самонесущего токопровода следует определять по формуле (12).

2.4.4. Расчет шинных конструкций с упругоподатливыми опорами

2.4.4.1. Максимальное напряжение в материале шин и максимальную нагрузку на изоляторы шинных конструкций с упругоподатливыми опорами следует определять соответственно по формулам (17) и (18), а частоту собственных колебаний - по формуле (22), учитывая при этом, что параметр основной частоты r_1 является функцией безразмерных величин $C_{\rm orr}l^3/EJ$ и M/ml, где $C_{\rm orr}$ - жесткость опор, а M - приведенная масса. Значения жесткости опор определяют по экспериментальным данным, а приведенной массы - согласно 2.4.4.2. Кривые для определения r_1 шин с жестким закреплением на опорах приведены на черт. 6, а для шин с шарнирным закреплением - на черт. 7. Для шин с чередующимися жесткими и шарнирными закрепления на опорах значение параметра r_1 допустимо приблизительно оценивать как среднее между его значениями, найденными по кривым черт. 6 и 7.

Кривые для определения параметра основной частоты собственных колебаний шины при ее жестком закреплении на упругоподатливых опорах

Черт. 6

Кривые для определения параметра основной частоты собственных колебаний шины при шарнирном закреплении ее на упругоподатливых опорах

Черт. 7

Значения r_1 для шин с жестким закреплением на опорах при $C_{orr}l^3$ / $EJ \ge 5000$ и для шин с шарнирным закреплением на опорах при $C_{orr}l^3$ / $EJ \ge 3000$ приведены в табл. 2.

2.4.4.2. Приведенную массу опоры (M) в килограммах определяют по приближенной формуле

$$M = M_{\rm orr} \left(\frac{H_{\rm Horr}}{H_{\rm max}} \right)^2, \tag{28}$$

где $M_{
m orr}$ - масса опоры, кг;

 $H_{{f u}\,{
m orr}}$, $H_{{f u}{f u}}$ - расстояния от основания опоры соответственно до центра массы опоры (изолятора) и центра масс поперечного сечения шины (черт. 8), м.

К расчету приведенной массы опоры

Если частота собственных колебаний опоры, закрепленной на упругом основании известна, то приведенную массу (M) в килограммах следует определять по формуле

$$M = \frac{C_{\text{orr}}}{\left(2\pi f_{\text{orr}}\right)^2},\tag{29}$$

где $\,C_{\rm orr}\,$ - жесткость опоры, практически равная жесткости изолятора $\,C_{_{\rm HI}}$, H/м;

 $f_{
m orr}$ - частота собственных колебаний опоры, Гц, равная частоте колебаний изолятора $f_{
m HI}$, Гц.

2.4.5. Проверка токопроводов на электродинамическую стойкость при наличии устройств автоматического

повторного включения

2.4.5.1. При наличии быстродействующих АПВ токопроводы электроустановок напряжением 35 кВ и выше следует проверять на электродинамическую стойкость при повторном включении на КЗ.

Методика проверки приведена в приложении 4. Такой проверки не требуется, если продолжительность бестоковой паузы, ($t_{5\pi}$) в секундах, составляет

$$t_{6\pi} \geq \frac{2,3}{f_1\delta},$$

где f_1 - первая (основная) частота собственных колебаний ошиновки, Гц;

З - декремент затухания токопровода при горизонтальных колебаниях шин.

2.4.6. Расчет гибких проводников

2.4.6.1. При расчете гибких проводников следует определять максимальные тяжение в проводниках и отклонение проводников при и после КЗ.

Расчет гибких проводников следует вести, исходя из закона сохранения энергии. Предварительные оценки тяжений в проводниках и смещений проводников допускается делать без учета влияния гирлянд изоляторов.

Расчет гибких проводников следует вести с помощью алгоритмов и программ на ЭВМ. Предварительные оценки тяжений в проводниках и смещений проводников допускается делать на основе закона сохранения энергии без учета расщепления проводников по методикам, представленным в приложении 1.

2.5. Проверка шинных конструкций, гибких проводников и электрических аппаратов на электродинамическую стойкость при КЗ

2.5.1. При проверке шинных конструкций на электродинамическую стойкость расчетными величинами являются максимальное напряжение в материале шин (σ_{max}) в паскалях и максимальная нагрузка на изоляторы

(*F_{жлх}*) в ньютонах.

Для проверки электродинамической стойкости шинных конструкций следует использовать следующие неравенства:

 $\sigma_{max} \leq \sigma_{gon};$ $F_{max} \leq F_{gon},$ (30)

где $\sigma_{\text{поп}}$ - допустимое механическое напряжение в материале шин,

Па, которое следует определять в соответствии с п. 2.3;

*F*_{дот} - допустимая механическая нагрузка на изоляторы, которую следует определять в соответствии с указаниями п. 2.3.

2.5.2. При проверке гибких проводников на электродинамическую стойкость расчетными величинами являются максимальное тяжение F_{maxf} и отклонение проводов при КЗ ^Sотк.

Для проверки электродинамической стойкости гибких проводников следует использовать следующие неравенства:

$$F_{\max f} \leq F_{\text{доп}};$$

$$s_{\max} \leq s_{\text{доп}};$$
(31)

где $F_{\text{доп}}$ - допустимое тяжение проводов, которое следует определять в соответствии с указаниями п. 2.3;

^Sдоп - допустимое отклонение проводов, которое следует определять в соответствии с указаниями п. 2.3.

2.5.3. Электродинамическая стойкость электрических аппаратов в зависимости от типа и конструкции характеризуется их предельными сквозными токами $i_{rrp,cxe}$ и $I_{rrp,cxe}$ и номинальными токами электродинамической стойкости i_{prote} и I_{prote} или кратностью тока электродинамической стойкости i_{prote} и I_{prote} или кратностью тока электродинамической стойкости i_{prote} .

Электродинамическая стойкость электрического аппарата обеспечена, если выполняются условия:

$$\begin{bmatrix}
I_{\mu p \alpha i} \geq I_{\pi i}; \\
i_{\mu p \alpha i} \geq i_{y \pi}; \\
i_{\pi p, \alpha i} \geq i_{y \pi}; \\
I_{\pi p, \alpha i} \geq I_{\pi i}
\end{bmatrix},$$
(32)

где I_{m} - начальное значение периодической составляющей тока КЗ

в электрическом аппарате;

і, ла - ударный ток КЗ.

3. ТЕРМИЧЕСКОЕ ДЕЙСТВИЕ ТОКА КОРОТКОГО ЗАМЫКАНИЯ

3.1. Определение интеграла Джоуля при КЗ

3.1.1. Степень термического воздействия тока КЗ на проводники и электрические аппараты определяется значением интеграла Джоуля ($B_{\mathbf{rep}}$) в амперах в квадрате на секунду

$$B_{\rm rep} = \int_{0}^{t_{\rm error}} i_{\rm A2}^2 dt, \tag{33}$$

где i_{xt} - ток КЗ в произвольный момент времени t, А;

toma - расчетная продолжительность КЗ в электроустановке (см. п. 1.1.5), с.

Допустимо степень термического воздействия тока КЗ определять также термически эквивалентным током КЗ

$$I_{\text{rep.sx}} = \sqrt{\frac{B_{\text{rep}}}{t_{\text{orism}}}}$$
(34)

и расчетной продолжительностью КЗ.

3.1.2. Необходимый для проверки проводников и электрических аппаратов на термическую стойкость при КЗ интеграл Джоуля B_{rep} допускается определять приближенно как сумму интегралов от периодической и апериодической составляющих тока КЗ, т. е.

$$B_{\text{rep}} \approx B_{\text{rep},\pi} + B_{\text{rep},\lambda}.$$
(35)

3.1.3. Методика аналитических расчетов интеграла Джоуля и термически эквивалентного тока КЗ зависит от расчетной схемы электроустановки, положения расчетной точки КЗ и ее удаленности от генераторов, синхронных компенсаторов и электродвигателей. При этом возможны следующие случаи:

а) исходная расчетная схема электроустановки имеет произвольный вид, но для всех генераторов и синхронных компенсаторов КЗ является удаленным, т. е. отношение действующего значения периодической составляющей тока любого генератора или синхронного компенсатора в начальный момент КЗ к его номинальному току менее двух. В этом случае все источники электрической энергии путем преобразования схемы замещения должны быть заменены одним эквивалентным источником, ЭДС которого принимают неизменной по амплитуде, а индуктивное сопротивление равным результирующему эквивалентному сопротивлению элементов расчетной схемы;

б) исходная расчетная схема содержит один или несколько однотипных и одинаково удаленных от расчетной точки КЗ генераторов (синхронных компенсаторов), причем расчетное КЗ является близким: действующее значение периодической составляющей тока генератора (синхронного компенсатора) превышает его номинальный ток в 2 и более раза;

в) исходная расчетная схема содержит произвольное число источников энергии, для которых расчетное КЗ является удаленным, а также генератор (синхронный компенсатор), который связан с точкой КЗ по радиальной схеме и это КЗ для него является близким. При этом все удаленные источники энергии и связывающие их с точкой КЗ элементы расчетной схемы следует объединить в отдельную ветвь и эквивалентную ЭДС в этой ветви считать неизменной по амплитуде;

г) исходная расчетная схема содержит различные источники энергии, для которых расчетное КЗ является удаленным, и группу электродвигателей, причем расчетная точка КЗ находится на шинах, к которым подключены электродвигатели. При этом на схеме замещения все удаленные источники энергии и связывающие их с точкой КЗ элементы расчетной схемы следует объединить в отдельную ветвь и эквивалентную ЭДС в этой ветви считать неизменной по амплитуде.

3.1.4. При определении интеграла Джоуля и термически эквивалентного тока КЗ допускается принимать, что апериодическая составляющая тока КЗ от той части расчетной схемы, которая содержит удаленные от места КЗ источники энергии, независимо от ее конфигурации изменяется по экспоненциальному закону с эквивалентной постоянной времени

$$T_{\rm a,se} = \frac{x_{\rm se}(R=0)}{aR_{\rm se}(x=0)},$$
(36)

где $x_{_{3K}}(R=0)$ и $R_{_{3K}}(x=0)$ - результирующие эквивалентные индуктивное и активное сопротивления рассматриваемой части расчетной схемы, определяемые из схем замещения, в которых все элементы расчетной схемы учтены соответственно только индуктивными и только активными сопротивлениями.

3.1.5. Если исходная расчетная схема содержит один или несколько источников энергии, для каждого из которых расчетное КЗ является удаленным, то интеграл Джоуля (B_{rep}) в амперах в квадрате на секунду, следует опеределять по формуле

$$B_{\text{rep}} = B_{\text{rep},\pi} + B_{\text{rep},\lambda} = I_{\text{rec}}^2 [t_{\text{org},\pi} + T_{\lambda,3K} (1 - e^{-\frac{2t_{\text{org}}}{T_{\text{org}}}})],$$
(37)

где $I_{\text{тос}}$ - начальное значение периодической составляющей тока КЗ от удаленного источника (источников), А.

В этом случае термически эквивалентный ток КЗ ($I_{\text{тер экт}}$) в амперах равен

$$I_{\text{rep ax}} = I_{\text{moc}} \sqrt{1 + \frac{T_{aax}}{t_{onx\pi}} \left(1 - e^{-\frac{2t_{onx}}{T_{aax}}}\right)}.$$
(38)

В случаях, когда $t_{\text{откят}} \ge 3T_{\text{алк}}$ интеграл Джоуля $B_{\text{тер}}$ допустимо определять по формуле

$$B_{\rm rep} \approx I_{\rm noc}^2 (t_{\rm onsn} + T_{\rm a.s.c}), \tag{39}$$

а термически эквивалентный ток КЗ ($I_{\text{тер эк}}$) в амперах - по формуле

$$I_{\text{rep 3K}} = I_{\text{roc}} \sqrt{1 + T_{a,3K} / t_{\text{orm}}}.$$
(40)

3.1.6. Если исходная расчетная схема содержит один или несколько однотипных и одинаково удаленных от расчетной точки КЗ генераторов (синхронных компенсаторов), причем расчетное КЗ является близким, то интеграл Джоуля $B_{\rm тер}$ следует определять по формуле

$$B_{\rm rep} = I_{\rm ror}^2 \left[B_{* {\rm rep r}} t_{\rm onen} + T_{\rm ar} \left(1 - e^{-\frac{2t_{\rm onen}}{T_{\rm or}}} \right) \right], \tag{41}$$

где $I_{\rm mor}$ - начальное действующее значение периодической составляющей тока K3 от генератора (генераторов, синхронных компенсаторов), А;

 $T_{\rm ar}$ - постоянная времени затухания апериодической составляющей тока от генератора (генераторов, синхронных компенсаторов), с;

В - относительный интеграл Джоуля:

$$B_{*_{\text{TEP}}r} = \frac{\int_{0}^{t_{\text{TEP}}} I_{\text{TEV}}^2 dt}{I_{\text{TEV}}^2 t_{\text{OBM}}},$$
(42)

где I_{mx} - действующее значение периодической составляющей тока К от генератора (генераторов, синхронных компенсаторов) в произвольный момент времени, А.

Значения относительного интеграла Джоуля $B_{\mathtt{repr}}$, учитывающего влияние изменения во времени амплитуды

периодической составляющей тока K3, при разных системах возбуждения генераторов и разных удаленностях расчетной точки K3 от генераторов, т. е. разных отношениях действующего значения периодической составляющей тока генератора в начальный момент K3 к номинальному току машины могут быть определены по кривым на черт. 9-12.

Кривые для определения
$$\mathop{B}\limits_{{}^{\mathrm{тер\,r}}}$$
 от синхронных генераторов
с тиристорной или высокочастотной системой
возбуждения

Черт. 9

Кривые для определения $\underset{{}^{*}\mathbf{T} \cong \mathbf{P}^{\mathbf{T}}}{B}$ от синхронных генераторов с тиристорной системой самовозбуждения и с последовательными трансформаторами

Черт. 10

Кривые для определения $B_{*_{\mathrm{ткр}\,\mathrm{r}}}$ от синхронных генераторов с тиристорной системой самовозбуждения без последовательных трансформаторов

Черт. 11

Кривые для определения $B_{{}^{T\!\times\!p\,r}}$ от синхронных генераторов с диодной бесщеточной системой возбуждения

Черт. 12

При рассматриваемой исходной расчетной схеме термически эквивалентный ток КЗ ($I_{\mathtt{TPP},\mathtt{JK}}$) в амперах следует определять по формуле

$$I_{\text{rep.3K}} = \sqrt{B_{\text{rep.r}} + \frac{T_{\text{ar}}}{t_{\text{orm}}} \left(1 - e^{\frac{2t_{\text{orm}}}{T_{\text{or}}}}\right)}.$$
(43)

В случаях, когда $t_{\rm ormst} \geq 3T_{\rm ar}$, интеграл Джоуля $B_{\rm rep}$ допустимо определять по формуле

$$B_{\text{rep}} \approx I_{\text{nor}}^2 \left(B_{\bullet \text{ rep}} t_{\text{ork}\pi} + T_{\text{ar}} \right), \tag{44}$$

а термически эквивалентный ток КЗ ($I_{\tt rep \, sk}$) в амперах - по формуле

$$I_{\text{rep 3K}} = I_{\text{roc}} \sqrt{B_{*} B_{\text{rep r}} + T_{\text{ar}} / t_{\text{orgen}}}.$$
(45)

3.1.7. Если исходная расчетная схема содержит произвольное число источников энергии, для которых расчетное КЗ является удаленным, а также генератор (синхронный компенсатор), который при КЗ оказывается связанным с точкой КЗ по радиальной схеме и это КЗ для него является близким, то интеграл Джоуля от

периодической составляющей тока КЗ ($B_{\mathtt{rep}\, \pi}$) в амперах в квадрате на секунду следует определять по формуле

$$B_{\text{rep fr}} = (I_{\text{roc}}^2 + 2I_{\text{roc}}I_{\text{ror}} Q_{\text{rep fr}} + I_{\text{roc}}^2 B_{\text{rep fr}})t_{\text{organ}}, \qquad (46)$$

где $I_{
m moc}$ - начальное значение периодической составляющей тока КЗ от удаленных источников энергии, А;

$$Q_{\text{*}_{\text{TEP}\,\Gamma}} = \frac{\int_{0}^{t_{\text{max}}} dt}{I_{\text{max}} t_{\text{orman}}}.$$
(47)

Значения относительного интеграла *Q* при разных системах возбуждения генераторов и разных • терт удаленностях расчетной точки КЗ от генераторов могут быть определены по кривым на черт. 13-16.

Черт. 13

Кривые для определения $\mathop{\mathcal{Q}}_{*_{\operatorname{Tep} r}}$ от синхронных

Черт. 14

Кривые для определения *Q* • терт от синхронных генераторов с тиристорной системой самовозбуждения без последовательных трансформаторов

Черт. 15

Кривые для определения $\mathcal{Q}_{{}^{*}\pi \mathfrak{P}\mathfrak{P}}{}^{*}$ от синхронных генераторов с диодной бесщеточной системой возбуждения

Черт. 16

При определении интеграла Джоуля от апериодической составляющей тока КЗ необходимо учитывать, что численные значения постоянных времени затухания апериодических составляющих токов от генератора или синхронного компенсатора ($T_{\rm ar}$) в секундах и от удаленных источников энергии ($T_{\rm ask}$) в секундах обычно значительно отличаются друг от друга. Поэтому интеграл Джоуля следует определять по выражению

$$B_{\text{rep}\,\lambda} = \int_{0}^{t_{\text{onn}}} (I_{\text{mor}}e^{-\frac{t}{T_{\text{on}}}} + I_{\text{mor}}e^{-\frac{t}{T_{\text{or}}}})^{2} dt =$$

$$= I_{\text{mor}}^{2} T_{\text{asse}} (1 - e^{-\frac{2t_{\text{onn}}}{T_{\text{on}}}}) + I_{\text{mor}}^{2} T_{\text{ar}} (1 - e^{-\frac{2t_{\text{onn}}}{T_{\text{or}}}}) +$$

$$+ \frac{4I_{\text{mor}}I_{\text{mor}}}{\frac{1}{T_{\text{asse}}}} [1 - e^{-t_{\text{onn}}(\frac{1}{T_{\text{on}}} + \frac{1}{T_{\text{or}}})}].$$
(48)

В случаях, когда $t_{\rm откят} \geq 3T_{\rm ar}$, допустимо использовать выражение

$$B_{\rm rep a} = I_{\rm roc}^2 T_{\rm ask} + I_{\rm ror}^2 T_{\rm ar} + \frac{4I_{\rm roc} I_{\rm ror}}{\frac{1}{T_{\rm ask}} + \frac{1}{T_{\rm ar}}}.$$
(49)

При рассматриваемой расчетной схеме термически эквивалентный ток КЗ определяют по формуле (34), учитывая при этом (35). Значение $B_{\mathtt{тер}\,\mathtt{n}}$ находят с помощью формулы (46), а $B_{\mathtt{тер}\,\mathtt{n}}$ - с помощью формулы (48)

или (49).

3.1.8. Если исходная расчетная схема содержит удаленные от точки КЗ источники энергии и группу электродвигателей, причем расчетная точка КЗ находится на шинах, к которым подключены электродвигатели, то для упрощения расчета интеграла Джоуля группу электродвигателей допустимо заменить одним эквивалентным электродвигателем, мощность которого равна сумме номинальных мощностей отдельных электродвигателей. При этом интеграл Джоуля следует определять по методике, изложенной в п. 3.1.7, т.е. с использованием формул (46), (48), (49), в которые вместо $I_{\rm mor}$, $T_{\rm ar}$, $Q_{\rm trepr}$ и $B_{\rm trepr}$ следует подставлять соответственно начальное значение периодической составляющей тока КЗ от эквивалентного двигателя $I_{\rm mor}$, постоянную

времени затухания апериодической составляющей его тока $T_{\mathtt{stg}}$ и функции $\mathcal{Q}_{\mathtt{ttpg},\mathtt{f}}$ и $\overset{B}{\mathtt{ttpg},\mathtt{f}}$ для этого электродвигателя. Значения этих функций для синхронных электродвигателей могут быть определены по кривым на черт. 17 и 18, а для асинхронных электродвигателей - по кривым на черт. 19 и 20.

Черт. 18

Черт. 17

Черт. 19

Черт. 20

Термически эквивалентный ток КЗ определяют по формуле (34).

3.2. Проверка электрических аппаратов на термическую стойкость при КЗ

3.2.1. Термическая стойкость электрических аппаратов при КЗ характеризуется их нормированным током термической стойкости ($I_{\text{тер норм}}$) в амперах и допустимым временем воздействия этого тока ($t_{\text{тер норм}}$) в секундах.

3.2.2. Расчетное выражение, которое следует использовать при проверке коммутационных аппаратов на термическую стойкость, зависит от расчетной продолжительности КЗ.

Если расчетная продолжительность КЗ (t_{orear}) в секундах равна или больше допустимого времени воздействия нормированного тока термической стойкости ($t_{rep \, Horpm}$) в секундах, то для проверки коммутационных аппаратов следует использовать выражение

$$B_{\rm rep} \leq I_{\rm rep \, hopm}^2 t_{\rm rep \, hopm} \,. \tag{50}$$

Если же $t_{\text{отвят}} \leq t_{\text{тер норм}}$, то условием термической стойкости является

$$B_{\text{rep}} \leq I_{\text{rep hop}}^2 t_{\text{organ}} t_{\text{organ}}$$
 (51)

3.2.3. Допускается проверку коммутационных электрических аппаратов на термическую стойкость при КЗ производить путем сравнения термически эквивалентного тока КЗ с допустимым током термической стойкости, учитывая при этом соотношение между допустимым временем воздействия нормированного тока термической стойкости и расчетной продолжительностью КЗ. Если $t_{orbst} > t_{ ext{Tep Hopm}}$, то проверку коммутационных аппаратов на термическую стойкость при КЗ следует производить, используя соотношение

$$I_{\text{тер 3K}} \leq I_{\text{тер норм}} \sqrt{t_{\text{тернорм}}/t_{\text{откп}}}.$$
(52)

Если же $t_{\text{откл}} \leq t_{\text{тер-норм}}$, то условием термической стойкости коммутационного аппарата является соотношение

$$I_{\text{Tep 3K}} \leq I_{\text{Tep HOPM}}.$$
 (53)

3.3. Проверка проводников на термическую стойкость при КЗ

3.3.1. Проверка проводников на термическую стойкость при КЗ заключается или в определении их температуры нагрева к моменту отключения КЗ и сравнении этой температуры с предельно допустимой температурой нагрева соответствующих проводников при КЗ, или в определении термически эквивалентной плотности тока КЗ и сравнении этой плотности с допустимой плотностью тока КЗ.

3.3.2. Расчет температуры нагрева проводников к моменту отключения КЗ следует вести с использованием кривых, приведенных на черт. 21 - для жестких шин, кабелей и некоторых проводов, и черт. 22 - для проводов других марок.

Кривые для определения температуры нагрева шин, проводов и кабелей из различных материалов при КЗ

Материалы проводников: 1 - ММ; 2 - МТ; 3 - АМ; 4 - АТ; 5 - АД0; АСТ; 6 - АД31Т1; 7 - АД31Т; 8 - Ст3

Черт. 21

Кривые для определения температур нагрева проводов при К3

Материалы проводов: 1 - сплавы АЖ и АЖКП; 2 - сплавы АН и АНКП; 3 - алюминий марок А, АКП, АпКП и сталеалюминий марок АС, АСКП, АСКС, АСК, АпС, АпСКС, АпСК

Черт. 22

С этой целью необходимо:

1) на черт. 21 выбрать кривую, соответствующую материалу проводника, и по этой кривой, исходя из начальной температуры проводника \mathcal{G}_{x} , определить значение функции $\mathcal{A}_{g_{x}}$, А·с²/мм⁴;

2) в соответствии с указаниями пп. 3.1.5 - 3.1.8 определить значение интеграла Джоуля $B_{{
m rep}}$;

3) найти значение функции $A_{g_{\mathbf{k}}}$, соответствующее конечной температуре нагрева проводника $\mathscr{G}_{\mathbf{k}}$

$$A_{g_{\star}} = A_{g_{\star}} + \frac{B_{\mathrm{rep}}}{S^2}, \qquad (54)$$

где S - площадь поперечного сечения проводника, мм 2 .

При расчете температуры нагрева сталеалюминиевых проводов в формулу (54) следует вводить площадь поперечного сечения алюминиевой части провода;

4) по найденному значению функции A_{s_k} , используя выбранную кривую на черт 21, определить конечную температуру нагрева проводника \mathcal{G}_{k} и сравнить ее с предельно допустимой температурой. Предельно допустимые температуры нагрева проводника при КЗ приведены в табл. 6.

Таблица 6

Предельно допустимые температуры нагрева

проводников	при	КЗ
-------------	-----	----

Вид проводников	У _{доп} , °С
1. Шины алюминиевые	200
2. Шины медные	300
3. Шины стальные, не имеющие непосредственного соединения с аппаратами	400
4. Шины стальные с непосредственным присоединением к аппаратам	300
5. Кабели с бумажной пропитанной изоляцией на напряжение, кВ:	
до 10	200
20-35	130
110-220	125
 Кабели и изолированные провода с медными и алюминиевыми жилами и изоляцией из: 	
поливинилхлорида	160
резины	150
резины повышенной теплостойкости	250
полиэтилена (номинальное напряжение кабеля до 35 кВ)	130
вулканизированного полиэтилена (номинальное напряжение кабеля до 35 кВ)	250
7. Медные неизолированные провода при тяжениях, Н/мм ² :	
менее 20	250
20 и более	200
8. Алюминиевые неизолированные провода при тяжениях, Н/мм ² :	
менее 10	200
10 и более	160
9. Алюминиевая часть сталеалюминиевых проводов	200

3.3.3. Если определяющим условием при выборе сечения проводника является его термическая стойкость при КЗ, то следует определить минимальное сечение проводника по условию термической стойкости ($S_{\text{тер жіж}}$) в миллиметрах в квадрате, используя выражение

$$S_{\text{rep min}} = \sqrt{\frac{B_{\text{rep}}}{A_{g_{\text{out}}} - A_{g_{n}}}}.$$
(55)

где $A_{\mathcal{G}_{nnn}}$ - значение функции $A_{\mathcal{G}}$, соответствующее предельно допустимой

температуре нагрева проводника при КЗ (см. табл. 6);

 $A_{g_{s}}$ - значение этой функции, соответствующее температуре проводника до КЗ.

Термическая стойкость проводника обеспечивается, если площадь сечения (*S*) в миллиметрах в квадрате удовлетворяет неравенству:

$$S \geq S_{\text{rep min}}$$
.

3.3.4. Если нагрузка проводника до КЗ близка к продолжительно допустимой, то минимальное сечение проводника, отвечающее требованию термической стойкости при КЗ, определяют по формуле

$$S_{\text{rep min}} = \frac{\sqrt{B_{\text{rep}}}}{C_{r}}, \qquad (56)$$

где
$$C_{_{\mathbf{T}}} = \sqrt{A_{_{\mathcal{S}_{_{\mathrm{DB}}}}} - A_{_{\mathcal{S}_{_{\mathrm{DB}}}}}}$$
, А.с.^{1/2}/мм²;

Значения параметра $C_{\mathbf{r}}$ для жестких шин приведены в табл. 7, для кабелей - в табл. 8, для проводов - в табл. 9.

Таблица 7

Система легирования	Материал проводника или марка сплава	Значение $C_{ m r}$, А·с $^{rac{1}{2}}$ /мм 2 , при начальной температуре, °С		им ² , rype, °C
		70	90	120
-	Медь	170	+	+
AI	АДО	90	81	68
	АД1Н	91	82	69
	АДОМ, АД1М	92	83	70
	АД31Т1	85	77	64
Al-Mg-Si	АД31Т	82	74	62
	АД33Т1	77	71	59

Значения параметров $C_{\rm T}$ жестких шин

	АДЗЗТ	74	67	57
	ABT1	73	66	55
	ABT	71	63	53
Al-Zn-Mg	1911	71	63	53
	1915, 1915T	66	60	51
Al-Mg-Mn	AMr5	63	57	48
-	Сталь при $\mathcal{G}_{\mathrm{дот}}$ = 400°С	70	+	+
	Сталь при $\mathscr{G}_{\mathrm{дот}}$ = 300°С	60	+	+

Таблица 8

Значения параметра $\mathit{C}_{_{\mathrm{T}}}$ кабелей

Характеристика кабелей	Значение $C_{\mathbf{r}}$, А $\cdot \mathbf{c}^{rac{1}{2}}$ /мм 2
1. Кабели до 10 кВ:	
с медными жилами	140
с алюминиевыми жилами	90
2. Кабели 20-35 кВ:	
с медными жилами	105
с алюминиевыми жилами	70
 Кабели и изолированные провода с полихлорвиниловой или резиновой изоляцией: 	
с медными жилами	120
с алюминиевыми жилами	75
 Кабели и изолированные провода с полиэтиленовой изоляцией: 	
с медными жилами	103
с алюминиевыми жилами	65

Таблица 9

Значения параметра C_{r} проводов

Материал провода	Марка провода	Значение $C_{ m T}$, А·с $^{rac{1}{2}}$ /мм 2 , при допустимых температурах нагрева проводов при КЗ, °С		
		160	200	250
1. Медь	М	-	142	162
2. Алюминий	Α, ΑΚΠ, Απ, ΑπΚΠ	76	90	-
3. Алюминиевый сплав	АН, АНКП АЖ, АЖКП	69 66	81 77	-
4. Алюминий - сталь	АСК, АПС, АСКС, АПСКС, АПСК, АС, АСКП	76	90	-

3.3.5. Допускается проверку проводников на термическую стойкость при КЗ проводить путем сравнения термически эквивалентной плотности тока КЗ ($J_{{\tt тер},{\tt зк}}$) в амперах на квадратный миллиметр

$$J_{\text{rep 3K}} = \frac{I_{\text{rep 3K}}}{S} \tag{57}$$

с допустимой в течение расчетного времени КЗ плотностью тока ($J_{\texttt{тер дол}}$) в амперах на квадратный миллиметр

$$J_{\text{rep gon}} = \frac{I_{\text{rep gon1}}}{S} \sqrt{\frac{1}{t_{\text{onser}}}} = \sqrt{\frac{A_{g_{\text{osc}}} - A_{g_{s}}}{t_{\text{onser}}}},$$
(58)

где $I_{\mathtt{rep}, \mathtt{gortl}}$ - допустимый ток односекундного КЗ, А; его значения для кабелей даны в нормативных документах.

Проводник удовлетворяет условию термической стойкости при КЗ, если выполняется соотношение

$$J_{\text{rep ax}} \leq j_{\text{rep gort}} = \frac{I_{\text{rep gort}}}{S} \sqrt{\frac{1}{t_{\text{ormen}}}} = \sqrt{\frac{A_{S_{\text{rep}}} - A_{S_{x}}}{t_{\text{ormen}}}}.$$
(59)

3.3.6. Если нагрузка проводника до КЗ близка к продолжительно допустимой, то допускается проверку проводника на термическую стойкость при КЗ проводить, используя соотношение

$$J_{\text{rep.sx}} \leq \frac{C_{\text{T}}}{\sqrt{t_{\text{orgst}}}}.$$
(60)

3.4. Проверка силовых кабелей на невозгораемость при КЗ

3.4.1. Для проверки силовых кабелей на невозгораемость при КЗ следует в соответствии с п. 3.3.2 определить конечную температуру нагрева их жил $\mathscr{G}_{\mathbf{k}}$ при расчетной продолжительности КЗ (см. п. 1.1.5) и сравнить ее с предельной температурой невозгораемости $\mathscr{G}_{\mathbf{k}}$.

Невозгораемость кабеля обеспечивается, если выполняется условие

$$\mathcal{G}_{\mathbf{k}} \leq \mathcal{G}_{\mathbf{H}\mathbf{g}}$$
 (61)

Предельная температура невозгораемости кабелей 6 кВ с пропитанной бумажной изоляцией равна 400°С для бронированных и 350°С - для небронированных кабелей.

ПРИЛОЖЕНИЕ 1

Рекомендуемое

1. МЕТОДИКА РАСЧЕТА ГИБКИХ ТОКОПРОВОДОВ

1.1. Максимальное возможное тяжение в проводниках ($F_{\max f}$) в ньютонах следует определять по формуле

$$F_{\max f} = \sqrt{2ES\frac{\bigtriangleup W_{\rm p}}{l} + F_{st}^2} \,, \label{eq:Fmax}$$

где S - площадь поперечного сечения проводника, м 2 ;

 $\Delta W_{
m p}\,$ - расчетная энергия;

$$\Delta W_{\rm p} = \Delta W_{\rm x}$$
 при $\Delta W_{\rm x} / Mgl \le 2;$

$$\Delta W_{\rm p} = 2Mgl$$
 при $\Delta W_{\rm g} / Mgl > 2$,

- где △*W*_ж энергия, накопленная проводником одного пролета за расчетное время КЗ, Дж;
 - *l* длина проводника в пролете, м;

$$F_{st}$$
 - тяжение в проводнике до КЗ, равное ${Mgl\over 8f_{\pi}}$;

- *Mgl* максимально возможная расчетная потенциальная энергия проводника;
- М масса проводника в пролете, кг;
- g ускорение свободного падения, м/с²;
- f_{π} провес проводника в пролете, м;
- расстояние от прямой, соединяющей точки крепления проводов на соседних опорах, до центра масс провода в пролете, м, причем

$$L = 2f_{\pi}/3.$$

Модуль упругости (E) проводника, свитого из пучка тонких проволок, как при наличии упрочняющего стального провода, так и без него, следует принимать меньшим, чем модуль упругости материала проводника из-

за повышенной растяжимости витого проводника при нагружении. Его значение необходимо определять опытным путем.

1.2. Максимальное смещение провода (Some) в метрах следует определять по формулам:

$$s_{\text{опк}} = f_{\pi} \sqrt{1 - (1 - \frac{\Delta W_{\chi}}{Mgl})^2}$$
 при $\Delta W_{\kappa} / Mgl < 1;$
 $s_{\text{опк}} = f_{\pi}$ при $\Delta W_{\kappa} / Mgl \ge 1.$

При кратковременном КЗ энергию , накопленную проводником ($riangle W_{\mathbf{x}}$) в джоулях, следует вычислять по формуле

$$\Delta W_{\mathbf{x}} = MgL(1-\cos\alpha) + \frac{1}{2}J(\alpha')^2,$$

где *α* и *α*' - угол отклонения провода и его первая производная по времени в момент отключения K3;

J - момент инерции провода относительно оси, проходящей через опоры провода, м 4 .

Кривые зависимости относительных параметров проводника $(\Delta W_{\rm K}/MgL)$ от относительной продолжительности КЗ (τ), относительных нагрузок на провод ($F_0^j/Mg_{(j=23)}$) и относительных размеров (α/L) при двух- и трехфазном КЗ приведены соответственно на черт. 23 и 24. При этом относительную продолжительность КЗ следует определять как

$$\tau = \frac{\omega_0}{2\pi}t,$$

где *t* - расчетная продолжительность K3, с;

$$\varpi_0 = \sqrt{MgL/J}.$$

Харакеристики
$$\frac{ riangle W_{R}}{MgL}$$
 при двухфазном КЗ

Черт. 23

Харакеристики $\frac{ riangle W_{\mathbf{x}}}{MgL}$ при трехфазном КЗ

•

Нагрузки ($F_0^{\ j}$) в ньютонах следует определять для различных видов КЗ (j = 2, 3): - для двухфазного КЗ

$$F_0^{(2)} = 2 \cdot 10^{-7} \frac{l}{\alpha} (I_{\rm mo}^{(2)})^2;$$

- для трехфазного КЗ

$$F_0^{(3)} = 1.5 \cdot 10^{-7} \frac{l}{\alpha} (I_{\rm reo}^{(3)})^2,$$

где $I_{\rm rm}^{(2)}$ и $I_{\rm rm}^{(3)}$ - начальные действующие значения периодической составляющей

токов соответственно двух- и трехфазного КЗ, А.

1.3. При относительной продолжительности КЗ $\tau \ge$ 0,6 энергию, накопленную проводником ($riangle W_{
m x}$) в джоулях, следует определять в зависимости от вида КЗ:

- при двухфазном КЗ

$$\Delta W_{\mathbf{k}} = \frac{1}{2} \Delta W_{\mathbf{k}}^{(2)}, \quad$$
если $\Delta W_{\mathbf{k}}^{(2)} = F^{(2)} \alpha \ln \frac{\alpha + 2L}{\alpha} > 2MgL;$

$$\Delta W_{\mathbf{k}} = Mgh$$
, если $\Delta W_{\mathbf{k}}^{(2)} \leq 2MgL$;

- при трехфазном КЗ

$$\Delta W_{\mathbf{k}} = \frac{1}{2} \Delta W_{\mathbf{k}}^{(3)}, \quad$$
если $\Delta W_{\mathbf{k}}^{(3)} = 1,33F^{(3)}\alpha [\ln \frac{\sqrt{(\alpha + L)^2 + L^2}}{\alpha} + 0,5 \ln \frac{\alpha + L}{\alpha}] \ge 2MgL;$
 $\Delta W_{\mathbf{k}} = Mgh,$ если $\Delta W_{\mathbf{k}}^{(3)} \le 2MgL,$

где h - максимальная высота подъема центра масс провода во время КЗ, определяемая из соотношения h/α , м.

Параметры h/α для случаев двух- и трехфазного КЗ следует определять по кривым, приведенным соответственно на черт. 25 и 26.

Характеристики $rac{h}{lpha}$ при двухфазном КЗ

Черт. 25

Характеристики $\frac{h}{\alpha}$ при трехфазном КЗ

$$\lambda = \frac{2}{3} \frac{F_0^{(3)}}{Mg}$$

Черт. 26

2. МЕТОДИКА РАСЧЕТА ГИБКИХ ТОКОПРОВОДОВ С УЧЕТОМ КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ ЭЛЕКТРОУСТАНОВОК

Допустимое сближение фаз оценивают по следующему условию

$$a = 2(y + r_p) \leq a_{mington}$$
,

где $\mathcal Y$ - максимальное отклонение провода, м;

- а расстояние между токопроводами соседних фаз, м;
- r_p радиус расщепления фазы, м;

 a_{mingon} - наименьшее допустимое расстояние между фазами, м.

Максимальное отклонение провода при двухфазном КЗ определяют по выражению

$$y = 1,25\sqrt{f_0^2 - H^2},$$

где f_0 - стрела провеса провода, м;

H - высота расположения провода относительно точки подвеса в момент его максимального отклонения, м, которая равна

$$H = f_0 \cos \alpha - 0.06 v^2,$$

где 🛛 - угол отклонения провода фазы к моменту отключения КЗ, рад;

V - скорость движения центра масс провода к моменту отключения КЗ, м/с.

Угол 🛛 определяют по формуле

$$\alpha = \frac{0.75 v t_{x}}{f_0},$$

где t_{χ} - расчетная продолжительность K3, с.

Скорость V определяют по формуле

$$\mathbf{v} = \frac{2I_{\rm res}^2 \left(t_{\rm x} + T_{a}\right)}{aq},$$

где I_{no} - начальное действующее значение периодической составляющей тока K3. кA:

 T_a - постоянная времени затухания апериодической составляющей тока КЗ, с:

q - приведенная нагрузка на фазу, Н/м, которая равна q = pK,

- где 🌮 погонный вес фазы, Н/м;
 - К коэффициент нагрузки, учитывающий влияние натяжных гирлянд изоляторов и спусков. Например, для пролета воздушной линии K = 1, для пролета наружной электроустановки с двумя натяжными гирляндами

$$K^{2} = \frac{l_{1}(l+4l_{r})}{l^{2}} + 12\frac{Q_{r}l_{r}}{Q^{2}l_{1}}(Q_{1} + \frac{2}{3}Q_{r}),$$

где

$$l_1 = l - 2l_r; Q = pl; Q_1 = pl_1$$

Если H < 0, то принимать H = 0.

ПРИЛОЖЕНИЕ 2

Рекомендуемое

Таблица 10

Расчетные выражения для определения коэффициента $1/\lambda(Z)$

Норме расчетной схемы в табл. 2	Расчетная формула для определения коэффициента $1/\lambda(Z)$		
1	$\frac{1}{2} \left \frac{Z}{l} - \frac{Z^2}{l^2} \right $		
2	$\left \frac{3}{8} - \frac{1}{2} - \frac{Z-l}{l}\right $		
3	$\frac{1}{2} \left \frac{Z}{l} - \frac{Z^2}{l^2} - \frac{1}{6} \right $		
4	a) $\left \frac{3}{8} - \frac{1}{2} - \frac{Z}{l} \right $		
	$\mathbf{6)} \left \frac{3}{8} - \frac{1}{2} - \frac{Z - l}{l} \right $		
5	а) Для крайнего пролета $\left 0,394rac{Z}{l}-0,5rac{Z^{2}}{l^{2}} ight $		
	б) Для второго пролета		
	$0,529\frac{Z}{l} = 0,5\frac{Z^2}{l^2} = 0,106$		
	в) Для среднего пролета		
	$\frac{1}{2} \left \frac{Z}{l} - \frac{Z^2}{l^2} - \frac{1}{6} \right $		

МЕТОДИКА ПРОВЕРКИ ТОКОПРОВОДОВ НА ЭЛЕКТРОДИНАМИЧЕСКУЮ СТОЙКОСТЬ ПРИ ПОВТОРНОМ ВКЛЮЧЕНИИ НА КЗ

Наибольшее напряжение в материале шин и максимальную нагрузку на изоляторы при повторном включении на КЗ определяют по формулам:

$$\begin{split} \sigma(Z) &= \sigma_1(Z) \Theta = \frac{\sqrt{3} \cdot 10^{-7} l^2}{\lambda(Z) a W} i_{yg}^2 \eta \Theta; \\ F_{\max} &= F_{1\max} \Theta = \beta \frac{\sqrt{3} \cdot 10^{-7} l}{a} i_{yg}^2 \eta \Theta, \end{split}$$

где $\sigma_1(Z)$ и $F_{1\max}$ - наибольшее напряжение и нагрузка при первом K3;

 коэффициент превышения напряжения и нагрузки при повторном КЗ.

Коэффициент превышения Θ определяют по кривым черт. 27а в зависимости от декремента затухания δ . Номер расчетной кривой на черт. 27а определяют в зависимости от продолжительности бестоковой паузы $t_{6\pi}$ и частоты собственных колебаний шины f_1 , используя черт. 276. Если точка с координатами $t_{6\pi}$ и f_1 лежит в зоне, ограниченной осями координат и кривой l, то коэффициент Θ определяют по кривой l, черт. 27а. Если эточка лежит в зоне, ограниченной кривыми I и II, то Θ определяют по кривой 2 и т.д. Следует отметить, что расчетные коэффициенты Θ получены при наиболее неблагоприятных условиях коммутаций, которые приводят при первом K3, в бестоковую паузу и повторном включении на K3 к наибольшим напряжениям в материале шин и нагрузкам на изоляторы и таким образом обеспечивают оценку электродинамической стойкости ошиновки.

> К определению коэффициента превышения Θ в зависимости от δ, $t_{6\pi}$, f_1

Черт. 27

ПРИЛОЖЕНИЕ 4

Рекомендуемое

ПРИМЕРЫ РАСЧЕТА ЭЛЕКТРОДИНАМИЧЕСКОЙ СТОЙКОСТИ ШИННЫХ КОНСТРУКЦИЙ

Пример 1. Проверить электродинамическую стойкость трехфазной шинной конструкции, изоляторы которой обладают высокой жесткостью, при действии тока КЗ $i_{yq}^{(3)}$ = 155 кА.

Шины выполнены из алюминиевого сплава марки АД31Т1, имеют прямоугольное сечение (60×6) мм², четыре пролета, расположены в одной плоскости и их параметры:

l = 1,2 м; *a* = 0,6 м; *m* = 0,972 кг/м;

$$E = 7 \cdot 10^{10}$$
 Па; $\sigma_{\text{дол}} = 137,2$ МПа.

Согласно табл. 4

$$J = \frac{bh^3}{12} = \frac{0.6 \cdot 6^3}{12} = 10.8 \text{ cm}^4 = 10.8 \cdot 10^{-8} \text{ m}^4;$$
$$W = \frac{bh^2}{6} = \frac{0.6 \cdot 6^2}{6} = 3.6 \text{ cm}^3 = 3.6 \cdot 10^{-6} \text{ m}^3;$$

Частота собственных колебаний

$$f_c = \frac{r_1^2}{2\pi l^2} - \sqrt{\frac{EJ}{m}} = \frac{4,73^2}{2\cdot 3,14\cdot 1,2^2} - \sqrt{\frac{7\cdot 10^{10}\cdot 10,8\cdot 10^{-8}}{0,972}} = 218,2 \text{ fm},$$

где r_1 = 4,73 соответствует расчетной схеме 5, табл. 2.

В соответствии с черт. 5 коэффициент динамической нагрузки равен 7 = 1,1.

Максимальное напряжение в шинах, определяемое по формуле (15), равно

$$\sigma_{\max} = \frac{F_{\max}^{(3)}l}{\mathcal{X}W} \eta = \frac{\sqrt{3} \cdot 10^{-7} \cdot 1.2^2 \cdot 155 \cdot 10^6 \cdot 1.1}{12 \cdot 0.6 \cdot 3.6 \cdot 10^{-6}} = 254 \cdot 10^6 \Pi a = 254 \text{ M} \Pi a.$$

где $F_{\mathrm{max}}^{(3)}$ определено по формуле (2), коэффициент λ - из табл. 2.

Поскольку $\sigma_{\text{max}} = 254$ МПа > $\sigma_{\text{дот}} = 137,2$ МПа, то шины не удовлетворяют условию электродинамической стойкости. Для снижения максимального напряжения в материале шин необходимо уменьшить длину пролета. Наибольшая допустимая длина пролета

$$l_{\text{morr}} = l \sqrt{\frac{\sigma_{\text{morr}}}{\sigma_{\text{max}}}} = 1.2 \sqrt{\frac{137.2}{254}} = 0.88 \text{ m}.$$

Примем длину пролета *l* = 0,8 м.

В этом случае f_1 = 491 Гц; η = 1,04 и

$$\sigma_{\text{max}} = \frac{\sqrt{3} \cdot 10^{-7} \cdot 0.8^2 \cdot 155^2 \cdot 10^6 \cdot 1.04}{12 \cdot 0.6 \cdot 3.6 \cdot 10^{-6}} = 134 \text{MIIa} < \sigma_{\text{max}}$$

Максимальную нагрузку на изолятор определяем по формуле (2):

$$F_{\max}^{(3)} = \frac{\sqrt{3} \cdot 10^{-7}}{a} l(i_{y\pi}^{(3)})^2 \quad K_{\Phi} K_{pacm} = \frac{\sqrt{3} \cdot 10^{-7}}{0.6} \cdot 0.8 \cdot 155^2 \cdot 10^6 \cdot 1 \cdot 1 = 5541 \text{ H}.$$

Выбираем изоляторы типа ИОР-10-16,00 УХЛЗ. Они удовлетворяют условию электродинамической стойкости (29), так как

$$F_{\text{gorr}} = 0,6F_{\text{page}} = 0,6 \cdot 16000 = 9600 \text{ H} > F_{\text{max}}^{(3)} = 5541 \text{ H}$$

Таким образом шинная конструкция при уменьшении длины пролета до 0,8 м отвечает требованиям электродинамической стойкости.

Пример 2. Проверить электродинамическую стойкость трехфазной шинной конструкции в цепи генератора, шины которой состоят из двух элементов корытного профиля при $i_{yg}^{(3)}$ = 120 кА.

Алюминиевые шины (марки АДО) сечением 2·3435 мм² расположены в горизонтальной плоскости и имеют следующие параметры: l = 2 м; $\alpha = 0.75$ м; $m_{_{3\pi}} = 9.27$ кг/м; $E = 7 \cdot 10^{10}$ Па; $\sigma_{_{30\pi}} = 41$ МПа; $\alpha_{_{3\pi}} = 0.2$ м; $l_{_{3\pi}} = 1$ м; $J_{_{y_0-y_a}} = J_{_{3\pi}} = 254 \cdot 10^{-8}$ м⁴; $J_{_{y-y}} = J = 4220 \cdot 10^{-8}$ м⁴; $W = 422 \cdot 10^{-6}$ м³; $W_{_{3\pi}} = 40 \cdot 10^{-6}$ м³.

Частоты собственных колебаний шины и элемента шины, определяемые по формулам (22) и (24), равны

$$f_{1} = \frac{r_{1}^{2}}{2\pi l^{2}} \sqrt{\frac{EJ}{m}} = \frac{4.73^{2}}{2 \cdot 3.14 \cdot 2^{2}} \sqrt{\frac{7 \cdot 10^{10} \cdot 4220 \cdot 10^{-8}}{9.27}} = 355 \text{ Fu};$$
$$f_{3\pi} = \frac{r_{1}^{2}}{2\pi l_{3\pi}^{2}} \sqrt{\frac{EJ_{3\pi}}{m_{3\pi}}} = \frac{4.73^{2}}{2 \cdot 3.14 \cdot 1^{2}} \sqrt{\frac{7 \cdot 10^{10} \cdot 254 \cdot 10^{-8}}{9.27}} = 49.3 \text{ Fu};$$

Для полученных значений f_1 , $f_{1 \circ \pi}$, η и $\eta_{\circ \pi}$ равны 1,0 (черт. 5).

Максимальные напряжения в материале шин, которые обусловлены взаимодействием токов разных фаз и токов элементов одной фазы в соответствии с формулами (15) и (22) равны

$$\sigma_{\text{primax}} = \frac{F_{\text{max}}^{(3)}l}{\lambda W} \eta = \frac{\sqrt{3} \cdot 10^{-7} \cdot 2^2}{12 \cdot 0.75 \cdot 422 \cdot 10^{-6}} \cdot 120^2 \cdot 10^6 \cdot 1 = 2,62 \cdot 10^6 \,\text{Ha} = 2,62 \,\text{ MFa},$$

$$\sigma_{\text{primax}} = \frac{2 \cdot 10^{-7} l_{\text{prim}}^2 K_{\Phi}}{\lambda a_{\text{prim}} W_{\text{prim}}} (\frac{i_{\text{prim}}}{n})^2 \eta_{\text{prim}} = \frac{2 \cdot 10^{-7} \cdot 1^2 \cdot 1}{12 \cdot 0.2 \cdot 40 \cdot 10^{-6}} \cdot \frac{120^2}{4} \cdot 1 = 2,52 \,\text{MFa},$$

$$= 7,5 \cdot 10^6 \,\text{Ha} = 7,5 \,\text{MFa}.$$

Суммарное напряжение в материале шины

$$\sigma_{\max} = \sigma_{\phi\max} + \sigma_{\max} = 2,62 + 7,5 = 10,12 \text{ MIIa}$$

Шины удовлетворяют условию электродинамической стойкости, так как

$$\sigma_{\rm max}$$
 = 10,12 МПа $< \sigma_{\rm gorr}$ = 41 МПа.

Максимальная нагрузка на изолятор, определяемая по формуле (2), равна

$$F_{\text{max}}^{(3)} = \frac{\sqrt{3} \cdot 10^{-7} \cdot 2}{0.75} \cdot 120^2 \cdot 10^6 = 6643 \text{ H}.$$

Выбираем изолятор типа ИО-10-20,00 УЗ.

Разрушающая нагрузка для этого изолятора составляет F_{page} = 20000 H, высота H_{HS} = 134 мм. Изолятор имеет внутреннее крепление арматуры (черт. 3а), поэтому k_{H} = $a_{_{3\pi}}/2$ = 0,1 м.

Согласно (8) допустимая нагрузка при изгибе изолятора равна

$$F_{\text{gorr}} = 0.6F_{\text{pas}} \frac{H_{\text{ps}}}{h_{\text{gr}} + H_{\text{ps}}} = 0.6 \cdot 20000 \frac{0.134}{0.134 + 0.1} = 6872 \text{ H}.$$

Расчетная максимальная нагрузка на изоляторы не превышает допустимую

$$F_{\text{max}}^{(3)} = 6643 \text{ H} < F_{\text{gorr}} = 6872 \text{ H},$$

поэтому изолятор типа ИО-10-20,00 УЗ удовлетворяет условиям электродинамической стойкости.

Пример 3. Проверить электродинамическую стойкость шинной конструкции наружной электроустановки напряжением 110 кВ при i_{yg} = 50 кА. Трубчатые шины квадратного сечения выполнены из алюминиевого сплава АД31T и расположены в одной плоскости. Высота шины H = 125 мм, толщина t = 8 мм, погонная масса m = 8,96 кг/м. Длина пролета l = 5,0 м; расстояние между фазами a = 1,0 м. Допустимое напряжение в материале шины σ_{gott} = 89 МПа, модуль упругости E = 7·10¹⁰ Па. Изоляторы типа ИОС-110-600 имеют высоту H_{HE} = 1100 мм, расстояние от головки изолятора до центра тяжести шины k_{H} = 80 мм, высоту арматуры нижнего фланца изолятора H_{acm} = 100 мм.

Жесткость изолятора $C_{_{\rm H2}}$ = 1100 кН/м, частота собственных колебаний $f_{_{\rm H2}}$ = 28 Гц.

Момент инерции и момент сопротивления шины в соответствии с формулами табл. 4 составляют

$$J = \frac{H^4 - h^4}{12} = \frac{12.5^4 - 10.9^4}{12} = 858,2 \text{ cm}^4 = 858,2 \cdot 10^{-8} \text{ m}^4;$$
$$W = \frac{H^4 - h^4}{6H} = \frac{12.5^4 - 10.9^4}{6 \cdot 12.5} = 137,3 \text{ cm}^3 = 137,3 \cdot 10^{-6} \text{ m}^3,$$

где h = H - 2t = 12,5 - 1,6 = 10,9 см.

Допустимая нагрузка на изолятор

где $H = H_{_{HS}} - H_{_{hpm}} = 1000 - 100 = 1000$ мм.

Значения жесткости и частоты колебаний опоры допустимо принять равными жесткости и частоте колебаний изолятора, так как изоляторы шинной конструкции установлены на весьма жестком основании.

Приведенная масса в соответствии с формулой (28) равна

$$M = \frac{C_{\text{orr}}}{\left(2\pi f_{\text{orr}}\right)^2} = \frac{1100 \cdot 10^3}{\left(2\pi \cdot 28\right)^2} = 35,6 \text{ kr}.$$

Необходимые для определения параметра основной частоты величины соответственно равны

$$C_{\rm out}l^3 / EJ = \frac{1100 \cdot 10^3 \cdot 5^3}{7 \cdot 10^{10} \cdot 858, 2 \cdot 10^{-8}} = 229;$$
$$M / ml = \frac{35.6}{8.96 \cdot 5} = 0.795.$$

По кривым черт. 6 параметры частоты r_1 = 3,3, поэтому

$$f_1 = \frac{-3.3^2}{2\pi \cdot 5^2} \sqrt{\frac{7 \cdot 10^{10} \cdot 858.2 \cdot 10^{-8}}{8.96}} = 18$$
гц.

По кривой черт. 5 7 = 0,90.

Максимальное напряжение в материале шины и нагрузка на изоляторы в соответствии с (15) и (2) составляют

$$\sigma_{\max} = \frac{\sqrt{3} \cdot 10^{-7} \cdot 5^2}{12 \cdot 1 \cdot 137, 3} \cdot 50^2 \cdot 10^6 \cdot 0,9 = 5,9 \text{ MIRa};$$

$$F_{\max} = \frac{\sqrt{3} \cdot 10^{-7} \cdot 5}{1} \cdot 50^2 \cdot 10^6 \cdot 0,9 = 1946 \text{ H, t.e.}$$

$$\sigma_{\max} = 5,9 < \sigma_{\text{gort}} = 89 \text{ MIRa u}$$

$$F_{\max} = 1946 \text{ H} < F_{\text{gort}} = 3300 \text{ H.}$$

Шинная конструкция удовлетворяет условиям электродинамической стойкости.

Текст документа сверен по: официальное издание Госстандарт России -М.: Издательство стандартов, 1993